Abstract

PurposeThis work aims to investigates exact solutions of the classical Glauert’s laminar wall jet mass and heat transfer under wall suction, wall contraction or dilation, and two thermal transport boundary conditions; prescribed constant surface temperature and prescribed constant surface flux in nanofluidic environment.Design/methodology/approachThe flow system arranged in terms of partial dif- ferential equations is non-dimensionalized with suitable dimensionless transformation variables, and this new set of equations is reduced into ordinary differential equations via a set of similarity transformations, where they are treated analytically for closed form solutions.FindingsExact solutions of nanofluid flow for velocity distributions, momentum flux, wall shear stress and heat transfer boundary layers for commonly studied nanoparticles; namely copper, alumina, silver, and titanium oxide are presented. The flow behavior of alumina and titanium oxide is identical, and a similar behavior is seen for copper and silver, making two pairs of identical traits. The mathematical expressions as well as visual analysis of wall shear drag and temperature gradient which are of practical interest are analyzed. It is shown that wall stretching or shrinking, wall transpiration and velocity slip together influences the jet flow mechanism and extends the original Glauert’s jet solutions. The exact solutions for the two temperature boundary layer conditions and temperature gradients are analyzed analytically. It is found that the effect of nanopar- ticles concentration on thermal boundary layer is intense, causing temperature uplift, whereas the wall transpiration causes a decrease in thermal layers.Originality/valueThe analysis carried out in nanofluid environment is genuinely new and unique, as our work generalizes the Glauert’s classical regular wall jet fluid problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call