Abstract

Effects of hard planar walls with a particle scale roughness on the spatial correlations of non-affine strain in amorphous solids are investigated via molecular dynamics simulations. When determined within layers parallel to the wall plane, normalized non-affine strain correlations are enhanced within layers closer to the wall. The amplitude of these correlations, on the other hand, is found to be suppressed by the wall. While the former is connected to the effects of a hard boundary on the continuum mechanics scale, the latter is attributed to molecular scale wall effects on the size of the region (nearest-neighbor cage), explored by particles on intermediate times scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.