Abstract

We present a new framework based on walks in a graph for analysis and inference in Gaussian graphical models. The key idea is to decompose the correlation between each pair of variables as a sum over all walks between those variables in the graph. The weight of each walk is given by a product of edgewise partial correlation coefficients. This representation holds for a large class of Gaussian graphical models which we call walk-summable. We give a precise characterization of this class of models, and relate it to other classes including diagonally dominant, attractive, non-frustrated, and pairwise-normalizable. We provide a walk-sum interpretation of Gaussian belief propagation in trees and of the approximate method of loopy belief propagation in graphs with cycles. The walk-sum perspective leads to a better understanding of Gaussian belief propagation and to stronger results for its convergence in loopy graphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.