Abstract

Navigating in virtual environments requires using some locomotion interfaces, especially when the dimensions of the environment exceed the ones of the Virtual Reality system. Locomotion interfaces induce some biases both in the perception of the self-motion or in the formation of virtual locomotion trajectories. These biases have been mostly evaluated in the context of static environments, and studies need to be revisited in the new context of populated environments where users interact with virtual characters. We focus on a situation of collision avoidance between a real participant and a virtual character, and compared it to previous studies on real walkers. Our results show that, as in reality, the risk of future collision is accurately anticipated by participants, however with delay. We also show that collision avoidance trajectories formed in VR have common properties with real ones, with some quantitative differences in avoidance distances. More generally, our evaluation demonstrates that reliable results can be obtained for qualitative analysis of small scale interactions in VR. We discuss these results in the perspective of a VR platform for large scale interaction applications, such as in a crowd, for which real data are difficult to gather.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.