Abstract

It can be challenging to identify the forces that drive speciation in marine environments for organisms that are capable of widespread dispersal because their contemporary distributions often belie the historical processes that were responsible for their initial diversification. In this contribution we explore the likely sequence of events responsible for the radiation of walking sharks in the genus Hemiscyllium using a dated molecular phylogeny. The nine currently recognised species in the genus consist of small, benthic sharks that are restricted to the Indo-Australian Archipelago and show limited dispersal at both juvenile and adult stages. We discuss how major tectonic changes, sea level fluctuations and the unique biology of the species may have influenced speciation in the group, as well as the current distribution of the genus and each of its constituent species. Phylogeographic analysis of the genus combined with biogeographic reconstruction of the region shows a recent radiation during the Miocene and Pliocene, and supports a combination of vicariance and founder modes of speciation mediated by major tectonic, geological and oceanographic historical processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.