Abstract

Individuals must constantly modify their gait patterns to safely transition between different surfaces. The goal of the current study was to determine if gait changes could be detected two steps from a transition, and whether these changes scaled with the angle of the hill. We hypothesized that during the anticipation of uphill walking and the aftereffect of downhill walking, the magnitude of kinetic and electromyography changes would be greatest at steep hill angles and fewer steps from the transition. We collected force and electromyography data as participants walked on the level ground before an uphill ramp and after a downhill ramp. As hypothesized, there were significant main effects for both the number of steps and angle of the hill for the first vertical GRF peak, as well as lateral gastrocnemius and vastus lateralis activity. Overall, our results indicate that when transitioning to and from hills, anticipation and aftereffect responses occur at least two steps from the transition and are scaled to the angle of the hill.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call