Abstract
The article deals with the design of a walking robot with gripping devices that allow the robot to move on arbitrarily oriented surfaces in space. Such robots are relevant primarily for the inspection of various industrial structures. A model of a two-support robot with gripping devices that allow it to be attached to support surfaces with a small curvature, but arbitrarily oriented in space, is proposed. To ensure attachment to the support surfaces, the robot is designed with five degrees of freedom. An important criterion is the possibility of dexterous movement on surfaces. One of the degrees of freedom of the robot was made linear, which makes it easier to step over obstacles and allows you to implement simpler walking algorithms. When the robot is attached to the supporting surfaces by two gripping devices at once, the kinematic chain is closed. This can lead to an increase in forces and moments in the robot’s links. In this paper, it is applied to use two methods of controlling the drives of the links together – the implementation of impedance control by introducing feedback on the evaluation of the moment based on the motor currents and ensuring the pliability of the gripping devices due to its own elasticity. A mathematical simulation of the robot was carried out, which showed the possibility of reducing the forces in the robot links when attaching the robot to two support surfaces at the same time. The best results were achieved when controlling the current vector of a synchronous motor and using current signals to implement impedance control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.