Abstract

In the course of our investigations on polymetallic complexes derived from 1,3-bis(thiophosphinoyl)indene (Ind(Ph(2)P=S)(2)), we observed original fluxional behavior and report herein a joint experimental/computational study of this dynamic process. Starting from the indenylidene chloropalladate species [Pd{Ind(Ph(2) P=S)(2)}Cl](-) (1), the new Pd(II)···Rh(I) hetero-bimetallic pincer complex [PdCl{Ind(Ph(2) P=S)(2)}Rh(nbd)] (2; nbd=2,5-norbornadiene) was prepared. X-ray crystallography and DFT calculations substantiate the presence of a d(8)···d(8) interaction. According to multinuclear variable-temperature NMR spectroscopic experiments, the pendant {Rh(nbd)} fragment of 2 readily shifts in solution at room temperature between the two edges of the SCS tridentate ligand. To assess the role of the pincer-based polymetallic structure on this fluxional behavior, the related monometallic Rh complex [Rh{IndH(Ph(2) P=S)(2)}(nbd)] (3) was prepared. No evidence for a metal shift was observed in that case, even at high temperature, thus indicating that inplane pincer coordination to the Pd center plays a crucial role. The previously described Pd(II)···Ir(I) bimetallic complex 4 exhibited fluxional behavior in solution, but with a significantly higher activation barrier than 2. This finding demonstrates the generality of this metal-shift process and the strong influence of the involved metal centers on the associated activation barrier. DFT calculations were performed to shed light onto the mechanism of such metal-shift processes and to identify the factors that influence the associated activation barriers. Significantly different pathways were found for bimetallic complexes 2 and 4 on one hand and the monometallic complex 3 on the other hand. The corresponding activation barriers predicted computationally are in very good agreement with the experimental observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.