Abstract

Let $X_1,X_2,\ldots$ be independent identically distributed nonnegative random variables. Wald's identity states that the random sum $S_T:=X_1+\cdots+X_T$ has expectation $\mathbb{E} T \cdot \mathbb{E} X_1$ provided $T$ is a stopping time. We prove here that for any $1<\alpha\leq 2$, if $T$ is an arbitrary nonnegative random variable, then $S_T$ has finite expectation provided that $X_1$ has finite $\alpha$-moment and $T$ has finite $1/(\alpha-1)$-moment. We also prove a variant in which $T$ is assumed to have a finite exponential moment. These moment conditions are sharp in the sense that for any i.i.d. sequence $X_i$ violating them, there is a $T$ satisfying the given condition for which $S_T$ (and, in fact, $X_T$) has infinite expectation.An interpretation of this is given in terms of a prophet being more rewarded than a gambler when a certain impatience restriction is imposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call