Abstract
We study the thermodynamics of the 4-dimensional electrically charged black-hole solutions of the simplest 5-dimensional Kaluza-Klein theory using Wald’s formalism. We show how the electric work term present in the 4-dimensional first law of black-hole thermodynamics arises in the purely gravitational 5-dimensional framework. In particular, we find an interesting geometric interpretation of the 4-dimensional electrostatic potential similar to the angular velocity in rotating black holes. Furthermore, we show how the momentum map equation arises from demanding compatibility between the timelike Killing vector of the black-hole solution and the spatial Killing vector of the 5-dimensional background.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.