Abstract

In this paper, we introduce Radio-On-Demand (ROD) wireless LAN (WLAN) in which access points (APs) are put into a sleep mode during idle periods and woken up by stations (STAs) upon communications demands. The on-demand wake-up is realized by a wake-up receiver which is equipped with each AP and is used to detect a wake-up signal transmitted by STA. In this paper, in order to reduce the hardware installation cost at STA, we advocate to utilize wireless LAN frames transmitted by each STA as a wake-up signal to awake the target AP. The STA generates a wake-up signal by devising WLAN signal: each STA creates a series of WLAN frames with different length to which the information on wake-up ID is embedded. The wake-up receiver extracts the wake-up ID from the received frames with a simple detector which ensures its low-power operation. We evaluate false negative (STA fails to wake up the target AP) and false positive (AP falsely wakes up without an intended wake-up signal) probabilities of our proposed on-demand wake-up scheme with computer simulations. The numerical results show that the proposed scheme achieves the false negative probability of about 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-2</sup> when the detection error ratio of `1' is less than 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-3</sup> . We also show that the false positive probability can be largely reduced by employing long WLAN frames to generate each wake-up signal. These results confirm that the proposed wake-up scheme is a promising approach to reducing wasteful energy consumed by idle APs in WLAN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call