Abstract
The use of duty-cycling in Medium Access Control (MAC) protocols effectively helps improving the energy efficiency of wireless networks. However, while the benefits of these protocols are unquestionable, most of them still suffer from overhearing and idle listening, two issues that prevent duty-cycled systems from achieving optimum energy usage, which is a crucial aspect in specific types of wireless networks such as Wireless Sensor Networks (WSN).Wake-up Radio (WuR) systems have been employed recently to overcome these issues. Under this approach, the nodes' MicroController Unit (MCU) and main radio transceiver are completely switched off and only activated when a secondary, extremely low-power receiver in the node is triggered by a particular wireless transmission. Wake-up Radio systems allow for drastic energy savings since receiver nodes are only activated on-demand, maximizing their battery lifetimes. In this paper, we have modeled and simulated a real, recent and promising WuR hardware platform based on its time and energy consumption characterization. By comparing such WuR approach to B-MAC and IEEE 802.15.4, two well-known and widely employed MAC protocols, we show it effectively out-performs the conventional WSN MAC approaches in terms of energy efficiency. To the best of authors' knowledge, this is the first study to include a comparative analysis for multi-hop networks based on a real WuR platform, which shows WuR systems represent an energy-efficient solution that also provides a good tradeoff between latency, packet delivery ratio and applicability..
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.