Abstract
The development of the new generation of non-volatile high-density ferroelectric memory requires the utilization of ultrathin ferroelectric films. The most promising candidates are polycrystalline-doped HfO2 films because of their perfect compatibility with silicon technology and excellent ferroelectric properties. However, the remanent polarization of HfO2 films is known to degrade when their thickness is reduced to a few nanometers. One of the reasons for this phenomenon is the wake-up effect, which is more pronounced in the thinner the film. For the ultrathin HfO2 films, it can be so long-lasting that degradation occurs even before the wake-up procedure is completed. In this work, an approach to suppress the wake-up in ultrathin Hf0.5Zr0.5O2 films is elucidated. By engineering internal built-in fields in an as-prepared structure, a stable ferroelectricity without a wake-up effect is induced in 4.5 nm thick Hf0.5Zr0.5O2 film. By analysis of the functional characteristics of ferroelectric structures with a different pattern of internal built-in fields and their comparison with the results of in situ piezoresponse force microscopy and synchrotron X-ray micro-diffraction, the important role of built-in fields in ferroelectricity of ultrathin Hf0.5Zr0.5O2 films as well as the origin of stable ferroelectric properties is revealed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.