Abstract
The efficient reduction of the pulse length and the energy width of electron beams plays a crucial role in the generation of short pulses in the range of sub-picoseconds at future light sources. At the radiation source ELBE in Dresden Rossendorf short pulses are required for coherent THz generation and laser-electron beam interaction experiments such as X-ray Thomson scattering. Energy dechirping can be carried out passively by wakefields generated when the electron beam passes through suitable structures, namely corrugated and dielectrically lined cylindrical pipes or dielectrically lined rectangular waveguides (*,**,***). All structures offer the possibility to tune the resulting wakefield and therefore the resulting energy chirp through a variation of purely geometrical or material parameters. In this paper we present a semi-analytical approach to determine the wakefield in dielectrically lined rectangular waveguide, starting with the expression of the electric field in terms of the structure's eigenmodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.