Abstract

The feasibility of an experiment which is being set up in our plasma laboratory to study the effect of a wakefield formed by an ultra-short (≤10−9 s) high-power (∼1 GW) microwave (10 GHz) pulse propagating in a cylindrical waveguide filled with an under-dense [(2–5) × 1010 cm−3] plasma is modeled theoretically and simulated by a particle in cell code. It is shown that the radial ponderomotive force plays a circular key role in the wakefield formation by the TM mode waveguide. The model and the simulations show that powerful microwave pulses produce a wakefield at lower plasma density and electric field gradients but larger space and time scales compared to the laser produced wakefield in plasmas, thus providing a more accessible platform for the experimental study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.