Abstract

ABSTRACT In this paper, hot-wire anemometry (HWA) is used to experimentally investigate interactions between a fully developed turbulent boundary layer and wake of an elliptic cylinder where axis ratio (AR) of the cylinder is 2. The elliptic cylinder was located inside and outside a turbulent boundary layer with a thickness (δ) of 0.38B. Furthermore, experiments were conducted at different Reynolds numbers (13,250 and 26,500) based upon the smallest cylinder diameter (B). Mean velocity, turbulence intensity and higher-order central moments of velocity signals (i.e. skewness and flatness) measurements were performed using HWA upon wake-boundary layer interactions on a flat plate. Results showed that profiles of stream-wise mean velocity and turbulence intensity were greatly dependent on gap ratio (G/B) and Reynolds number (Re) in near-wake region. It was also observed that, except for G/B = 0.1, the wake-boundary layer interactions were faster at Reynolds number of 26,500 rather than 13,250. The interactions occurred earlier upon fluctuating the velocity rather than the case where a fixed mean velocity was considered. The results further show that an increase in the gap ratio increases Strouhal number almost independent of δ/B. Behind the cylinder, relatively smaller wake region was obtained at Re = 26,500 rather than Re = 13,250, where the velocity profiles quickly converged to the flat plate boundary layer velocity profiles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call