Abstract
Recently, the concept of wake-up radio based access has been considered as an effective power saving mechanism for 5G mobile devices. In this article, the average power consumption of a wake-up radio enabled mobile device is analyzed and modeled by using a semi-Markov process. Building on this, a delay-constrained optimization problem is then formulated, to maximize the device energy-efficiency under given latency requirements, allowing the optimal parameters of the wake-up scheme to be obtained in closed form. The provided numerical results show that, for a given delay requirement, the proposed solution is able to reduce the power consumption by up to 40% compared with an optimized discontinuous reception (DRX) based reference scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Zenodo (CERN European Organization for Nuclear Research)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.