Abstract

Experimental and numerical approaches have their own advantages and limitations, in particular, when dealing with complex phenomena such as snow particles falling at moderate Reynolds numbers (Re). Time-resolved, three-dimensional particle tracking velocimetry (4D-PTV) experiments of free-falling, three-dimensional (3D)-printed snowflakes' analogs shed light on the elaborate falling dynamics of irregular snow particles but present a lower resolution (tracer seeding density) and a limited field of view (domain size) to fully capture the wake flow. Delayed-detached eddy simulations of fixed snow particles do not realistically represent all the physics of a falling ice particle, especially for cases with unsteady falling attitudes, but accurately predict the drag coefficient and capture the wake characteristics for steadily falling snowflakes. In this work, we compare both approaches on time- and space-averaged flow quantities in the snowflake wake. First, we cross validate the two approaches for low Re cases, where close agreement of the wake features is expected, and second, we assess how strongly the unsteady falling motion perturbs the average wake pattern as compared to a fixed particle at higher Re. For steadily falling snowflakes, the fixed-particle model can properly represent the wake flow with errors within the experimental uncertainty (±15%). At moderate/high Re (unsteady falling motion), larger differences are present. Applying a co-moving frame to the experimental data to account for the particle movement or filtering the numerical data on larger grids reduces these differences only to some extent, implying that an unsteady fall significantly alters the average wake structure as compared to a fixed particle model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call