Abstract

We study the delay in asymmetric cyclic polling models with general mixtures of gated and exhaustive service, with generally distributed service times and switch-over times, and in which batches of customers may arrive simultaneously at the different queues. We show that (1−ρ)X i converges to a gamma distribution with known parameters as the offered load ρ tends to unity, where X i is the steady-state length of queue i at an arbitrary polling instant at that queue. The result is shown to lead to closed-form expressions for the Laplace–Stieltjes transform (LST) of the waiting-time distributions at each of the queues (under proper scalings), in a general parameter setting. The results show explicitly how the distribution of the delay depends on the system parameters, and in particular, on the simultaneity of the arrivals. The results also suggest simple and fast approximations for the tail probabilities and the moments of the delay in stable polling systems, explicitly capturing the impact of the correlation structure in the arrival processes. Numerical experiments indicate that the approximations are accurate for medium and heavily loaded systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.