Abstract

With decrease in the cost and the size of sensor devices, we can envision a world of ubiquitous sensor networks. Usually, sensor data needs to be disseminated from the source to data collectors, making the spatially distributed sensor data available for applications. The widespread and ubiquitous nature of mobile devices, e.g., PDAs and cell phones around the world, makes them attractive to be used as mobile data collectors (MDCs) to collect and deliver the sensor data. The goal of this work is to design a dissemination protocol that leads to efficient data delivery from the source sensors to ubiquitous MDCs. We propose the Wait-Focus-Spray (WFS) data delivery scheme for wireless sensor networks with ubiquitous MDCs. The main objective of WFS is to balance the data delivery latency and transmission overhead when considering the existence of ubiquitous MDCs. In WFS, we also propose a corresponding mechanism-probabilistic scattered binary spraying (PSBS), to reduce the spatial redundancy when spraying data copies, which can increase the probability of meeting a MDC. We then present an analytical model based on the Markov chain model to analyze the trade-off between delivery latency and transmission cost in WFS. Through extensive simulations, we demonstrate that our proposed scheme reduces the transmission cost per message while provides comparable delivery delay compared with the alternative approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.