Abstract

Pb-free perovskite material is considered to be a promising material utilized in next-generation X-ray detectors due to its high X-ray absorption coefficient, decent carrier transport properties, and relatively low toxicity. However, the pixelation of the perovskite material with an industry-level photolithography processing method remains challenging due to its poor structural stability. Herein, we use Cs2AgBiBr6 perovskite material as the prototype and investigate its interaction with photolithographic polar solvents. Inspired by that, we propose a wafer-scale photolithography patterning method, where the pixeled perovskite array devices for X-ray detection are successfully prepared. The devices based on pixeled Pb-free perovskite material show a high detection sensitivity up to 19118 ± 763 μC Gyair-1 cm-2, which is comparable to devices with Pb-based perovskite materials and superior to the detection sensitivity (∼20 μC Gyair-1 cm-2) of the commercial a-Se detector. After pixelation, the devices achieve an improved spatial resolution capacity with the spatial frequency from 2.7 to 7.8 lp mm-1 at modulation-transfer-function (MTF) = 0.2. Thus, this work may contribute to the development of high-performance array X-ray detectors based on Cs2AgBiBr6 perovskite material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.