Abstract

All-wet metal-assisted chemical etching (MACE) is a simple and low-cost method to fabricate one-dimensional Si nanostructures. However, it remains a challenge to fabricate Si nanocones (SiNCs) with this method. Here, we achieved wafer-scale fabrication of SiNC arrays through an all-wet MACE process. The key to fabricate SiNCs is to control the catalyst evolution from deposition to etching stages. Different from conventional MACE processes, large-size Ag particles by solution deposition are obtained through increasing AgNO3 concentration or extending the reaction time in the seed solution. Then, the large-size Ag particles are simultaneously etched during the Si etching process in an etching solution with a high H2O2 concentration due to the accelerated cathode process and inhibited anode process in Ag/Si microscopic galvanic cells. The successive decrease of Ag particle sizes causes the proportionate increase of diameters of the etched Si nanostructures, forming SiNC arrays. The SiNC arrays exhibit a stronger light-trapping ability and better photoelectrochemical performance compared with Si nanowire arrays. SiNCs were fabricated by using n-type 1–10 Ω cm Si(100) wafers in this work. Though the specific experimental conditions for preparing SiNCs may differ when using different Si wafers, the summarized diagram will still provide valuable guidance for morphology control of Si nanostructures in MACE processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.