Abstract

AbstractWe demonstrate the integration of nanotube networks on 512 individual devices on a full 4‐inch wafer in less than 60 seconds with a roughly 80% yield using dielectrophoresis. We present here investigations of the morphology and electrical resistance of such field aligned networks for different frequencies of the electrical field used to attract the nanotubes to the electrodes. Preliminary data of response to visible light irradiation as well as changes in the humidity indicate that the field aligned networks could be used as sensor components that may well integrate with CMOS due to mild assembly conditions. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.