Abstract

ABSTRACT In semiconductor manufacturing systems, a time-constrained multi-cluster tool should be scheduled such that a wafer stays in a process chamber in a given time range to satisfy a wafer residency time constraint. In practice, activity time is subject to variation. It could lead to some fluctuation of wafer residency time in a process chamber. Hence, it is crucial to analyze how wafer residency time varies with activity time variation. This issue is especially challenging for multi-cluster tools. This work focuses on determining the exact upper bound of wafer sojourn time delay resulted from activity time variation for dual-arm multi-cluster tools. After discussing their dynamic behaviours, it presents a two-level real-time operational architecture and a real-time control policy. Based on them, this work derives for the first time an efficient algorithm to calculate the exact upper bound of wafer sojourn time delay in a process chamber. As a result, engineers can test whether a given schedule is feasible. Several examples of industrial significance are used to demonstrate the application of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call