Abstract
Vapor–solid phase reaction (VSPR) is a two-step process for synthesizing 2D MoS2. In the first step, a precursor film such as molybdenum oxide is grown on a substrate, followed by a sulfurization process at elevated temperature. This process offers a scalable fabrication of wafer-scale film with feasible control in thickness and uniformity. However, the properties of MoS2 films from this VSPR process often suffer from poor electrical properties. The major reason is their polycrystalline (PC) structure with large concentrations of defects and grain boundaries, which are inherited from the amorphous precursor films. Here, we report a new and scalable VSPR process in which epitaxial MoO2 films (grown over a 2-inch wafer) are used as high-quality precursors, which are converted into quasi-single-crystalline (QSC) MoS2. We demonstrate that the field effect mobility of transistors fabricated using a QSC MoS2 channel is almost 35 times larger, compared to a PC MoS2 channel, also better than most previously reported MoS2 films by other two-step MoS2 formation processes. Our process presents a new approach in which the epitaxial growth of the precursor phase can be used to improve 2D semiconductor and device performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.