Abstract

Platinum ditelluride (PtTe2) is an emerging semimetallic two-dimensional (2D) transition-metal dichalcogenide (TMDC) crystal with intriguing band structures and unusual topological properties. Despite much devoted efforts, scalable and controllable synthesis of large-area 2D PtTe2 with well-defined layer orientation has not been established, leaving its projected structure-property relationship largely unclarified. Herein, we report a scalable low-temperature growth of 2D PtTe2 layers on an area greater than a few square centimeters by reacting Pt thin films of controlled thickness with vaporized tellurium at 400 °C. We systematically investigated their thickness-dependent 2D layer orientation as well as its correlated electrical conductivity and surface property. We unveil that 2D PtTe2 layers undergo three distinct growth mode transitions, i.e., horizontally aligned holey layers, continuous layer-by-layer lateral growth, and horizontal-to-vertical layer transition. This growth transition is a consequence of competing thermodynamic and kinetic factors dictated by accumulating internal strain, analogous to the transition of Frank-van der Merwe (FM) to Stranski-Krastanov (SK) growth in epitaxial thin-film models. The exclusive role of the strain on dictating 2D layer orientation has been quantitatively verified by the transmission electron microscopy (TEM) strain mapping analysis. These centimeter-scale 2D PtTe2 layers exhibit layer orientation tunable metallic transports yielding the highest value of ∼1.7 × 106 S/m at a certain critical thickness, supported by a combined verification of density functional theory (DFT) and electrical measurements. Moreover, they show intrinsically high hydrophobicity manifested by the water contact angle (WCA) value up to ∼117°, which is the highest among all reported 2D TMDCs of comparable dimensions and geometries. Accordingly, this study confirms the high material quality of these emerging large-area 2D PtTe2 layers, projecting vast opportunities employing their tunable layer morphology and semimetallic properties from investigations of novel quantum phenomena to applications in electrocatalysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call