Abstract

We have fabricated at wafer scale graphene-based configurations suitable for implementing at room temperature one-qubit quantum gates and a modified Deutsch-Jozsa algorithm. Our measurements confirmed the (quasi-)ballistic nature of charge carrier propagation through both types of devices, which have dimensions smaller than the room-temperature mean-free-path in graphene. As such, both graphene-based configurations were found to be suitable for quantum computation. These results are encouraging for demonstrating a miniaturized, room-temperature quantum computer based on graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.