Abstract

Inspired by the outstanding properties discovered in two-dimensional materials, the bottom-up generation of molecular monolayers is becoming again extremely popular as a route to develop novel functional materials and devices with tailored characteristics and minimal materials consumption. However, achieving a full-coverage over a large-area still represents a grand challenge. Here we report a molecular self-assembly protocol at the water surface in which the monolayers are strained by a novel solvent surface tension balance (SSTB) instead of a physical film balance as in the conventional Langmuir-Blodgett (LB) method. The obtained molecular monolayers can be transferred onto any arbitrary substrate including rigid inorganic oxides and metals, as well as flexible polymeric dielectrics. As a proof-of-concept, their application as ideal modification layers of a dielectric support for high-performance organic field-effect transistors (OFETs) has been demonstrated. The field-effect mobilities of both p- and n-type semiconductors displayed dramatic improvements of 1-3 orders of magnitude on SSTB-derived molecular monolayer, reaching values as high as 6.16 cm2 V-1 s-1 and 0.68 cm2 V-1 s-1 for pentacene and PTCDI-C8, respectively. This methodology for the fabrication of wafer-scale and defect-free molecular monolayers holds potential toward the emergence of a new generation of high-performance electronics based on two-dimensional materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.