Abstract

Twisted bilayer graphene (TBG) has been extensively studied because of its novel physical properties and potential application in electronic devices. Here we report the synthesis and characterization of 30° TBG naturally grown on Cu0.75Ni0.25 (111) film and investigate the electronic structure by angle-resolved photoemission spectroscopy. Compared with other substrates, our TBG with a wafer scale is acquired with a shorter growth time. The Fermi velocity and energy gap of Dirac cones of TBG are comparable with those of a monolayer on Cu0.85Ni0.15 (111). The signature of moiré lattices has not been observed in either the low-energy electron diffraction patterns or the Fermi surface map within experimental resolution, possibly due to different Cu and Ni contents in the substrates enhancing the different couplings between the substrate and the first/second layers and hindering the formation of a quasiperiodic structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.