Abstract

A contact-mechanics-based finite model for Cu/ low-k chemical mechanical polishing is presented. 2D axisymmetric quasi-static model for chemical mechanical polishing which includes four-layer structure: Si, low-k, Copper and polishing pad is established. The mechanical response at the interface between the silicon, low-k, copper, and pad is simulated under the loading of the chemical mechanical polishing. The effect of slurry is simplified as the friction force reacted onto both the copper and the polishing pad in the finite element model. Down pressure, status of slurry and the elastic modulus of polishing pad are treated as the parameter in the simulation. Using the model, the effects of applied down pressure, pad properties, status of slurry on the non-uniformity of the wafer surface can be readily evaluated. Simulation results show that the distribution of the Von Mises stresses across a wafer’s surface correlates with experimental removal rate profiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.