Abstract

Recently, silicon photonics foundries started providing access to new dielectric stacks which can be utilized to reduce optical I/O losses. For example, in a hybrid c-Si/SiN platform, inverse design techniques can be used to create novel dual layer grating coupler (GC) designs which, in simulations, reach state-of-the-art performance. In this paper, we experimentally validate such designs for perfectly vertical single-polarization GCs in the O-band consisting of a single-etch c-Si layer with a patterned SiN overlay, fabricated using a DUV immersion lithography process on wafers. Here, we investigate designs generated by two different design paradigms: inverse design based on the adjoint method and adjoint-inspired design. Using wafer-level testing, we experimentally demonstrate a record low median insertion loss (IL) of (with interquartile range of –) for perfectly vertical coupling in DUV lithography compatible devices which is a improvement over previously demonstrated single-layer, single-etch c-Si GCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.