Abstract

We present an experimental technique and a Finite Element thermal simulation for the determination of the temperature elevation in Silicon on Insulator (SOI) MOSFETs due to self-heating. We evaluate the temperature elevation in two steps, as we calibrate the gate resistance over temperature with the transistor at off state at a first stage, and then we deduce the temperature elevation through gate resistance measurements. We simulate the self-heating phenomena in a Finite Elements Method (FEM) environment, both with 2D and 3D models. In order to set up the simulations, we weight the effects of several parameters, such as thermal material properties, the modeling of heat generation and a careful setting of boundary conditions. We present typical temperature fields and local heat fluxes, thus giving concrete indications for solving thermal reliability issues. Simulation results show temperature elevations up to approximately 120K in the hot spot, 70K in the gate and 7K in the Back End of Line (BEoL). The 3D model gives results that are satisfying over the whole set of MOSFETs we consider in this work. Temperature elevation strongly depends on physical dimensions, where transistors endowed with shorter gates suffer from more severe self-heating. We propose a simplified model based on geometrical parameters that predict maximum and gate temperatures, obtaining satisfying results. Since correlation with measurements confirms the correctness of our model, we believe that our simulations could be a useful tool to determine accurate reliability rules and in a context of thermal aware design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.