Abstract

The wafer-level aperiodic nanostructures were fabricated atop the sapphire substrates in order to increase the transmittance over broadband spectra. The fabrication was presented along with characterization of their optical properties. The nanostructures were patterned using natural lithography with nickel silicide as a hard mask, and the subsequent etching was performed using inductively coupled plasma dry-etching method. The sapphire substrates with nanostructures compared to conventional sapphire substrates, which exhibit antireflective characteristics over broadband spectra at a wide range of incident angles. The nanostructures reduce the reflection down to 5% in the visible spectrum for normal incidence. The transmittance of visible to near-IR spectra was found to be 94% at normal incidence and over 90% at an incident angle of 45°. In the mid-IR spectrum, the transmittance exceeds 88% until the reflection is no longer suppressed by nanostructures. The polarization properties have also been investigated. The nanostructures can enhance the reflectivity ratio 90% for wavelengths shorter than 400 nm. As the amplitude ratio, enhanced from 50% to 80% over the whole visible spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.