Abstract

In this investigation, Cu-Sn lead-free solder microbumps on 10-μm pads with a 20-μm pitch are designed and fabricated. The chip size is 5 × 5 mm with thousands of microbumps. A daisy-chain feature is adopted for the characterization and reliability assessment. After pattern trace formation, the microbump is fabricated on the trace by an electroplating technique. A suitable barrier/seed layer thickness is designed and applied to minimize the undercut due to wet etching but to still achieve good plating uniformity. With the current process, the undercut is less than 1 μm and the bump height variation is less than 10%. In addition, the shear test is adopted to characterize the bump strength, which exceeds the specification. Also, the Cu-Sn lead-free solder microbumped chip is bonded on an Si wafer using chip-to-wafer bonding technique. Furthermore, the microgap between the bonded chips is filled with a special underfill. The shear strength of the bonded chips without the underfill is measured and it exceeds the specification. The bonding and filling integrity is further evaluated by open/short measurement, scanning acoustic tomography analysis, and cross-section with scanning electron microscopy analysis. The stacked ICs are evaluated by reliability (thermal cycling) test (-55 to 125°C). Finally, ultrafine-pitch (5-μm pads on a 10-μm pitch) lead-free solder microbumping is explored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.