Abstract
Wadsley–Roth crystallographic shear structure niobium‐based oxides are of great interest in fast Li+ storage due to their unique 3D open tunnel structures that offer facile Li+ diffusion paths. Their moderate lithiation potential and reversible redox couples hold the great promise in the development of next‐generation lithium‐ion batteries (LIBs) that are characterized by high power density, long lifespan, and high safety. Despite these outstanding merits, there is still extensive advancement space for further enhancing their electrochemical kinetics. And the industrial feasibility of Wadsley–Roth crystallographic shear structure niobium‐based oxides as anode materials for LIBs requires more systematic research. In this review, recent progress in this field is summarized with the aim of realizing the practical applications of Wadsley–Roth phase anode materials in commercial LIBs. The review focuses on research toward the crystalline structure analyses, electrochemical reaction mechanisms, modification strategies, and full cell performance. In addition to highlighting the current research advances, the outlook and perspective on Wadsley–Roth anode materials is also concisely provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.