Abstract
Wadi Fatima fold-thrust (FAT) belt is a distinctive foreland FAT belt in the Arabian-Nubian Shield (ANS) involving unmetamorphosed to slightly metamorphosed sedimentary sequence of Fatima Group, deposited over a metamorphic/igneous basement, comprising ortho-amphibolites, orthoand para-schists (with chaotic unmappable blocks of marbles, pyroxenites and metagabbros), older granite (773 ± 16 Ma) and younger granite. The basement exhibits structural fabrics, such as attenuated tight isoclinal folds, sheared-out hinges, NE-SW penetrative foliation and subhorizontal stretched and mineral lineations, related to an oldest prominent dextral shearing phase affected the main Wadi Fatima during the Neoproterozoic. In Wadi Fatima FAT belt, the style of deformation encompasses flexural-slip folding forming mesoscopicand map-scales NE to ENE plunging overturned antiforms and synforms, and a thrust duplex system bounded by floor thrust and sole thrust (basal detachment) dipping gently towards the hinterland (SE to SSE direction) and rises stratigraphically upwards towards the foreland. Such style is affiliated to thin-skinned deformation. Several lines of evidence, such as geometry of interacting outcropand map-scale folds and thrusts, patterns of thrust displacement variations and indications for hinge migration during fold growth, strongly suggest that folding and thrusting in Wadi Fatima FAT belt are geometrically and kinematically linked and that thrusting initiated as a consequence of folding (fold-first kinematics). Thrusts frequently show flat-ramp-flat geometry, and every so often give an impression that they are formed during two main sub-stages; an older sub-stage during which bedding sub-parallel thrusts were formed, and a younger sub-stage which generated younger ramps oblique to bedding. Thrust ramps with SE to SSE dipping regularly show sequential decrease in dip or inclination (due to piggy-back imbrication) into their transport direction which is proposed to be towards NW to NNW. Evidence indicating this transport direction of Wadi Fatima FAT belt embrace NW to NNW oriented stretching lineations recorded along thrust planes, NW to NNW folding vergence, and diminishing of the intensity of deformation and thrust stacking and imbrication from SE to NW; i.e. from hinterland to foreland. The tectonic transport vector is congruent with the mean orientation of slickenline striae formed by layer-parallel slipping along folded bedding planes. The mean orientation of slickenline lineations, after their host beds were rotated to horizontal about their strikes, is found to be N25°W - S25°E. Two tectonic models are proposed to unravel the structural history of the study area and to illustrate the tectonic evolution of Wadi Fatima FAT belt which represents one of interesting foreland FAT belts recorded worldwide. In the first model, the area was evolved from dextral shearing during the early convergence and amalgamation between East and West Gondwana, to emplacement of the older granite during a period of crustal cessation and relaxation, NNW SSE extension and extrusion of dyke swarms, emplacement of younger granite, deposition of Fatima Group over an ancient peneplain, layer parallel shortening, folding and fold tightening and overturning, thrusting, NE-SW (to NNE-SSW) shortening, and eventually NE tilting accompanied with Red Sea rifting (?). The second model suggests the presence of basement ramps (pre-existing normal faults), with NW to NNW dipping, have a strong effect on overlying Fatima Group which was evolved throughout gravitational, soft-sediment slumping and deformation.
Highlights
The Arabian-Nubian Shield (ANS) is a collage of Neoproterozoic juvenile arcs, younger sedimentary and volcanic basins, voluminous granitoid intrusions, and enclaves of pre-Neoproterozoic crust that crop out in the western Arabian Plate and the northeastern African Plate at the northern end of the East African Orgen (EAO); [1,2,3,4]
In Wadi Fatima FAT belt, the style of deformation encompasses flexural-slip folding forming mesoscopicand map-scales NE to ENE plunging overturned antiforms and synforms, and a thrust duplex system bounded by floor thrust and sole thrust dipping gently towards the hinterland (SE to SSE direction) and rises stratigraphically upwards towards the foreland
Based mainly on the previously mentioned work carried out by [13,15] described the general geology and lithology of the Neoproterozoic Fatima Group and came to the conclusion that this Group has developed on the line of a major SW-trending fault system known as the Fatima structural zone; the zone is the most prominent and longest-lasting structural feature in the Jeddah area having been in existence since Precambrian times
Summary
The Arabian-Nubian Shield (ANS) is a collage of Neoproterozoic juvenile arcs, younger sedimentary and volcanic basins, voluminous granitoid intrusions, and enclaves of pre-Neoproterozoic crust that crop out in the western Arabian Plate and the northeastern African Plate at the northern end of the East African Orgen (EAO); [1,2,3,4]. The study aims to add much more insights into the body of data that constrains the deformation history of the shield rocks It discusses the tectonic setting of the greater Wadi Fatima District within the frame of recently accepted plate tec-tonic models proposed for the evolution of the ANS, describes the relation of Fatima Group to the other basement rocks and presents details on the styles, geometries and kinematics of both folding and thrusting that playing a noteworthy role in the structural shaping of the whole Wadi Fatima District
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.