Abstract
The structure of the Wadge degrees on zero-dimensional spaces is very simple (almost well ordered), but for many other natural nonzero-dimensional spaces (including the space of reals) this structure is much more complicated. We consider weaker notions of reducibility, including the so-called Δ0α-reductions, and try to find for various natural topological spaces X the least ordinal αX such that for every αX ⩽ β < ω1 the degree-structure induced on X by the Δ0β-reductions is simple (i.e. similar to the Wadge hierarchy on the Baire space). We show that αX ⩽ ω for every quasi-Polish space X, that αX ⩽ 3 for quasi-Polish spaces of dimension ≠ ∞, and that this last bound is in fact optimal for many (quasi-)Polish spaces, including the real line and its powers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.