Abstract

ABSTRACT Bimetallic structures of Ti6Al4V-W7Ni3Fe were fabricated via directed energy deposition (DED)-based additive manufacturing (AM). Our research demonstrates the ability of DED-based AM to control Ti6Al4V-W7Ni3Fe bimetallic structures with tailorable mechanical and thermal performance. The thermal conductivity of the bimetallic structures was three times higher than Ti6Al4V at 300°C. Uniaxial compression along the transverse direction showed a failure strain of 63% compared to pure Ti6Al4V, while the longitudinal direction showed a failure strain of only 37% of Ti6Al4V. Variable hardness was observed throughout the sample due to diffusion of elements and intermetallic phase formations. Scanning electron microscopy revealed that the interfaces in the as-printed samples were crack-free with elemental gradients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call