Abstract

AbstractThe question how G‐protein‐coupled receptors transduce an extracellular signal by a sequence of transmembrane conformational transitions into an intracellular response remains to be solved at molecular detail. Herein, we use molecular dynamics simulations to reveal distinct conformational transitions of the adenosine A2A receptor, and we found that the conserved W2466.48 residue in transmembrane helix TM6 performs a key rotamer toggle switch. Agonist binding induces the sidechain of W2466.48 to fluctuate between two distinct conformations enabling the diffusion of water molecules from the bulk into the center of the receptor. After passing the W2466.48 gate, the internal water molecules induce another conserved residue, Y2887.53, to switch to a distinct rotamer conformation establishing a continuous transmembrane water pathway. Further, structural changes of TM6 and TM7 induce local structural changes of the adjacent lipid bilayer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.