Abstract

A new W-polymetal gate electrode with the structure of W/WN/WSi/poly-Si is proposed. The W-polymetal gate is suitable for high-density memories since it has low resistance and is compatible with the self-aligned contact process. In our study, however, it is found that the interface of W and poly-Si has non-ohmic and quite high resistance in the case wherein only WN is used as a barrier film. This resistance increases the delay in complementary metal-oxide-semiconductor (CMOS) logic circuits and prevents high-speed operation. Our new process includes the deposition of thin WSi on poly-Si, followed by rapid thermal annealing, which results in ohmic and sufficiently low contact resistance between W and poly-Si. It is also demonstrated that selective gate reoxidation is successfully applied for this new structure, and the insertion of thin WSi does not cause any adverse effect on the electrical characteristics of metal-oxide-semiconductor field-effect transistor (MOSFET). This process is promising for high-speed and high-density embedded memory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.