Abstract
HypothesisPickering emulsions (PE) are becoming of increasing interest for catalytic multiphase processes. Ultrafiltration of PE is a promising procedure for catalyst recovery to enable continuous processes. Dispersing conditions during production of PE are expected to significantly influence PE characteristics, and control of these properties is essential for robust process design. However, while the impact of PE composition has been studied before, knowledge on dispersing conditions is surprisingly scarce. ExperimentsThe influence of dispersing time, speed and emulsion volume during the preparation of PE with an UltraTurrax (2 dispersing tools) on the drop size distribution, rheology, stability and filtration was investigated. FindingsIn this first systematic study of PE preparation conditions, obtained Sauter mean diameters were correlated with energy density (R2 = 0.80), energy dissipation rate (R2 = 0.85) and tip speed (R2 = 0.86). All emulsions were stable for at least 10 weeks. With increasing tip speed (4–13 m/s), the dynamic viscosity first decreased, passed through a plateau value and then increased again. Filtration of concentrated PE was successful but strong membrane-particle-solvent interactions were revealed. This work contributes to a better understanding of PE properties that are essential for a sound application of PE in continuous multiphase catalysis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.