Abstract

Although ZrC is a promising ultrahigh temperature ceramics due to the high melting point, high strength, high hardness and low density, the improvement of mechanical properties and thermal stability is very significance for it's ultrahigh temperature application. To improve the mechanical and thermodynamic properties of ZrC ultrahigh temperature ceramics, we apply the first-principles calculations to study the influence of W-doped concentration on the structural stability, hardness, elastic modulus, elastic anisotropy and thermodynamic properties of the cubic ZrC ceramics. The calculated results show that three W-doped ZrC are thermodynamic stability. In particular, the calculated impurity formation energy of the W-doped ZrC increases with increasing W concentration. Importantly, the calculated elastic modulus of the W-doped ZrC increases with increasing W concentration. Although the hardness of W-doped ZrC is bigger than the parent ZrC, the hardness of W-3.125 at.% is higher than the W-doped ZrC with the high concentration of W. Naturally, the high hardness and elastic modulus of the W-doped ZrC is that the metal W enhances the localized hybridization between Zr and C, which is demonstrated by the change of ZrC bond. In addition, the parent ZrC and the W-doped ZrC show excellent elastic anisotropy. Furthermore, the calculated Debye temperature of W-3.125 at.% ZrC is higher than the parent ZrC and the other W-doped ZrC. Therefore, we predict that the W-3.125 at.% ZrC shows excellent mechanical properties and better thermodynamic properties in comparison to the other W-doped ZrC ceramics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.