Abstract

The CDF collaboration's recent high-precision measurement of the W mass is in 7.0σ disagreement with the Standard Model expectation. This tension will be relieved if the W boson has a non-trivial right-handed gauge coupling at high energies. At TeV scales, the SM gauge symmetric four-fermion interactions induce a right-handed gauge coupling, and SM fermions compose massive composite particles. We investigate the top-quark mass produced by spontaneous symmetry breaking and compute the W and Z boson propagators and decays. The right-handed coupling corrections to their masses and widths are consistent with experimental measurements. We discuss how SM gauge bosons and composite particles can restore parity-preserving gauge symmetries at TeV scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.