Abstract

Distributed wall loss is proposed to enhance the stability and tunability of a W-band TE01 gyrotron backward-wave oscillator (gyro-BWO). Simulation results reveal that loss effectively suppresses the unwanted transverse modes as well as the high-order axial modes (HOAMs) without degrading the performance of a gyro-BWO that operates at the fundamental axial mode. Linear and nonlinear codes are used to calculate the interaction properties. The effects of the distributed loss on the starting currents of all of the modes of interest are discussed in depth. The interacting structure is optimized for stability. The calculated peak output power is 102kW, corresponding to an efficiency of 20%. The 3dB tuning bandwidth is 1.8GHz, centered at 94.0GHz when using 5A and 100kV electron beam.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call