Abstract

We demonstrate that the simultaneous injection locking of two monolithically integrated distributed feedback (DFB) laser diodes (LDs) with an optical frequency comb is a feasible technique for photonic-based carrier signal generation in the real-time coherent wireless link. The phase of the carrier signal generated by heterodyning the two injection-locked DFB LDs is sufficiently stable to achieve 10-Gb/s error-free (bit-error rate $ ) coherent wireless transmission in the $W$ -band (75–110 GHz) without active phase stabilization on the transmitter side and digital signal processing on the receiver side. Compared with a direct detection scheme, we show a 17-dB sensitivity improvement using coherent detection. These results open the path toward the development of compact and cost-effective coherent photonic wireless transmitters based on state-of-the-art InP photonic integrated circuit technology, which have wider bandwidth compared with electronics-based transmitters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.