Abstract

In this work, we consider a functional I : W 0 1 , p ( Ω ) × W 0 1 , p ( Ω ) → R of the form I ( u , v ) = 1 p ∫ Ω ( | ∇ u | p + | ∇ v | p ) d x − ∫ Ω H ( x , u ( x ) , v ( x ) ) d x where Ω ⊂ R N is a smooth bounded domain, max { | ∂ s H ( x , s , t ) | , | ∂ t H ( x , s , t ) | } ⩽ C ( 1 + | s | σ 1 − 1 + | t | σ 2 − 1 ) a.e. x ∈ Ω, for some C > 0, ∀ t , s ∈ R, p < σ i ⩽ p ∗ : = N p / ( N − p ), i = 1 , 2, and 1 < p < N. We prove that a local minimum in the topology of C 0 1 ( Ω ) × C 0 1 ( Ω ) is a local minimum in the topology of W 0 1 , p ( Ω ) × W 0 1 , p ( Ω ). An important application of this result is related to the question of multiplicity of solutions for a class of systems with concave-convex type nonlinearities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.