Abstract

AbstractThis paper presents a method for exploitable vulnerabilities detection in binary code with almost no false positives. It is based on the concolic (a mix of concrete and symbolic) execution of software binary code and the annotation of sensitive memory zones of the corresponding program traces (represented in a formal manner). Three big families of vulnerabilities are considered (taint related, stack overflow, and heap overflow). Based on the angr framework as a supporting software VulnerabilitY detection based on dynamic behavioral PattErn Recognition was developed to demonstrate the viability of the method. Several test cases using custom code, Juliet test base and widely used public libraries were performed showing a high detection potential for exploitable vulnerabilities with a very low rate of false positives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.