Abstract
The alloying effects of tungsten on the hydrogen solubility and the hydrogen permeability are investigated for V-based hydrogen permeable membranes. The hydrogen solubility is found to decrease by the addition of tungsten into vanadium or by increasing the temperature. It is shown that the ductile fracture occurs for V–5 mol%W alloy even in the hydrogen pressures of 0.3 MPa at 773 K. It is also found that the mechanical properties (i.e., strength and ductility) of V-based alloy are better than that of Nb-based alloy in hydrogen atmosphere at high temperature. It is demonstrated that the V–5 mol%W alloy possess excellent hydrogen permeability without showing any hydrogen embrittlement when used under appropriate permeation conditions, i.e., temperature and hydrogen pressures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.