Abstract

Aminoacetonitrile (AAN) is a key compound in astrochemistry and astrobiology. We present a combined theoretical and experimental investigation concerning the single photoionization of gas-phase AAN and the fragmentation pathways of the resulting cation. At present, we measured photoelectron photoion coincidence (PEPICO) spectra in the 9.8–13.6eV energy regime using synchrotron radiation as exciting light source. In order to interpret the VUV experimental data obtained, we explored the ground potential energy surface (PES) of AAN and of its cation using standard and explicitly correlated quantum chemical methodologies. This allowed us to deduce accurate thermochemical data for this molecule. We also determined, for the first time, the adiabatic ionization energy of AAN to lie at AIE=(10.085±0.03)eV. The unimolecular decomposition pathways of the resulting AAN+ parent cation are also investigated. The appearance energies of five fragments are determined for the first time, with 30meV accuracy. Interestingly, our work shows the possibility of the formation of both HCN and HNC isomeric forms. The implications for the evolution of prebiotic molecules under VUV irradiation are briefly discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call