Abstract
BackgroundAgeing alters the ECM, leading to mitochondrial dysfunction and oxidative stress, which triggers an inflammatory response that exacerbates with age. Age-related changes impact satellite cells, affecting muscle regeneration, and the balance of proteins. Furthermore, ageing causes a decline in NAD+ levels, and alterations in fat metabolism that impact our health. These various metabolic issues become intricately intertwined with ageing, leading to a variety of individual-level diseases and profoundly affecting individuals' healthspan. Therefore, we hypothesize that vutiglabridin capable of alleviating these metabolic abnormalities will be able to ameliorate many of the problems associated with ageing. MethodThe efficacy of vutiglabridin, which alleviates metabolic issues by enhancing mitochondrial function, was assessed in aged mice treated with vutiglabridin and compared to untreated elderly mice. On young mice, vutiglabridin-treated aged mice, and non-treated aged mice, the Senescence-associated beta-galactosidase staining and q-PCR for ageing marker genes were carried out. Bulk RNA-seq was carried out on GA muscle, eWAT, and liver from each group of mice to compare differences in gene expression in various gene pathways. Blood from each group of mice was used to compare and analyze the ageing lipid profile. ResultsSA-β-gal staining of eWAT, liver, kidney, and spleen of ageing mice showed that vutiglabridin had anti-ageing effects compared to the control group, and q-PCR of ageing marker genes including Cdkn1a and Cdkn2a in each tissue showed that vutiglabridin reduced the ageing process. In aged mice treated with vutiglabridin, GA muscle showed improved homeostasis compared to controls, eWAT showed restored insulin sensitivity and prevented FALC-induced inflammation, and liver showed reduced inflammation levels due to prevented TLO formation, improved mitochondrial complex I assembly, resulting in reduced ROS formation. Furthermore, blood lipid analysis revealed that ageing-related lipid profile was relieved in ageing mice treated with vutiglabridin versus the control group. ConclusionVutiglabridin slows metabolic ageing mechanisms such as decreased insulin sensitivity, increased inflammation, and altered NAD+ metabolism in adipose tissue in mice experiments, while also retaining muscle homeostasis, which is deteriorated with age. It also improves the lipid profile in the blood and restores mitochondrial function in the liver to reduce ROS generation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.